# Graphing the secant function using Desmos (radians)

This video explains how to graph the secant function by making connections to the graph of the cosine function.

# Graphing the secant function using Desmos (degrees)

This video explains how to graph the secant function by making connections to the graph of the cosine function.

# Graph a Secant Transformation in the Form: y=asec(bx+c)+d

This video explains how to graph a transformation of the secant function.

# Find 6 Trig Function Values of 315 Degrees (Reference Triangle and Unit Circle)

This video explains how to determine the sine, cosine, tangent, cosecant, secand, and cotangent function values of 315 degrees using a reference triangle and the unit circle.

# Find 6 Trig Function Values of 210 Degrees (Reference Triangle and Unit Circle)

This video explains how to determine the sine, cosine, tangent, cosecant, secand, and cotangent function values of 210 degrees using a reference triangle and the unit circle.

# Find Trigonometric Function Values for 0 Degrees or 0 Radians

This video explains how to use the unit circle to determine the six trigonometric function values for 0 degrees or 0 radians.

# Given sin(A)=2/5 and Quadrant of A, Find 5 Trig Function Values

This video explains how to find the 5 remaining trigonometric function values given the sine function value and the quadrant of the angle.

# Proof – The Derivative of f(x)=arcsec(x): d/dx[arcsec(x)]

The video proves the derivative formula for f(x) = arcsec(x).

# Proof – The Derivative of Tangent: d/dx[tan(x)]

This video proves the derivative of the tangent function.

# Proof – The Derivative of Secant: d/dx[sec(x)]

This video proves the derivative of the secant function.