# Graphing the cotangent function using Desmos (radians)

This video explains how to graph the cotangent function by making connections to the graph of the tangent function.

# Graphing the cotangent function using Desmos (degrees)

This video explains how to graph the cotangent function by making connections to the graph of the tangent function.

# Find an Angle That Shows an Equation is Not an Identity (csc and cot)

This video explains how to determine an angles that shows an equation is not an identity.

# Find Excluded Values of the Domain of Tangent and Cotangent

This video explains how to use the unit circle to determine which angles in degrees are excluded from the domain of tangent and cotangent.

# Find 6 Trig Function Values of 315 Degrees (Reference Triangle and Unit Circle)

This video explains how to determine the sine, cosine, tangent, cosecant, secand, and cotangent function values of 315 degrees using a reference triangle and the unit circle.

# Find 6 Trig Function Values of 210 Degrees (Reference Triangle and Unit Circle)

This video explains how to determine the sine, cosine, tangent, cosecant, secand, and cotangent function values of 210 degrees using a reference triangle and the unit circle.

# Find Trigonometric Function Values for 0 Degrees or 0 Radians

This video explains how to use the unit circle to determine the six trigonometric function values for 0 degrees or 0 radians.

# Ex: Solve cot(x)=a Without a Calculator

This video explains how to solve the equation cot(x)=a  on the interval [0, 2pi) using reference triangles and the unit circle.

# Ex: Derivatives Using the Chain Rule Involving a Trigonometric Functions

This video provides two examples of how to apply the chain rule to find a derivative.  One example has a rational exponent.

# Ex 2: Derivatives of Inverse Trig Functions

This video provides two examples of how to find the derivative of an inverse trigonometric function.  One example does not require the chain rule and one example requires the chain rule.